Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 85(6): 3739-57, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645065

RESUMO

Molecular determinants essential for skeletal-type excitation-contraction (EC) coupling have been described in the cytosolic loops of the dihydropyridine receptor (DHPR) alpha1S pore subunit and in the carboxyl terminus of the skeletal-specific DHPR beta1a-subunit. It is unknown whether EC coupling domains present in the beta-subunit influence those present in the pore subunit or if they act independent of each other. To address this question, we investigated the EC coupling signal that is generated when the endogenous DHPR pore subunit alpha1S is paired with the heterologous heart/brain DHPR beta2a-subunit. Studies were conducted in primary cultured myotubes from beta1 knockout (KO), ryanodine receptor type 1 (RyR1) KO, ryanodine receptor type 3 (RyR3) KO, and double RyR1/RyR3 KO mice under voltage clamp with simultaneous monitoring of confocal fluo-4 fluorescence. The beta2a-mediated Ca2+ current recovered in beta1 KO myotubes lacking the endogenous DHPR beta1a-subunit verified formation of the alpha1S/beta1a pair. In myotube genotypes which express no or low-density L-type Ca2+ currents, namely beta1 KO and RyR1 KO, beta2a overexpression recovered a wild-type density of nifedipine-sensitive Ca2+ currents with a slow activation kinetics typical of skeletal myotubes. Concurrent with Ca2+ current recovery, there was a drastic reduction of voltage-dependent, skeletal-type EC coupling and emergence of Ca2+ transients triggered by the Ca2+ current. A comparison of beta2a overexpression in RyR3 KO, RyR1 KO, and double RyR1/RyR3 KO myotubes concluded that both RyR1 and RyR3 isoforms participated in Ca2+-dependent Ca2+ release triggered by the beta2a-subunit. In beta1 KO and RyR1 KO myotubes, the Ca2+-dependent EC coupling promoted by beta2a overexpression had the following characteristics: 1), L-type Ca2+ currents had a wild-type density; 2), Ca2+ transients activated much slower than controls overexpressing beta1a, and the rate of fluorescence increase was consistent with the activation kinetics of the Ca2+ current; 3), the voltage dependence of the Ca2+ transient was bell-shaped and the maximum was centered at approximately +30 mV, consistent with the voltage dependence of the Ca2+ current; and 4), Ca2+ currents and Ca2+ transients were fully blocked by nifedipine. The loss in voltage-dependent EC coupling promoted by beta2a was inferred by the drastic reduction in maximal Ca2+ fluorescence at large positive potentials (DeltaF/Fmax) in double dysgenic/beta1 KO myotubes overexpressing the pore mutant alpha1S (E1014K) and beta2a. The data indicate that beta2a, upon interaction with the skeletal pore subunit alpha1S, overrides critical EC coupling determinants present in alpha1S. We propose that the alpha1S/beta pair, and not the alpha1S-subunit alone, controls the EC coupling signal in skeletal muscle.


Assuntos
Encéfalo/metabolismo , Canais de Cálcio Tipo L/química , Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Miocárdio/metabolismo , Alelos , Animais , Cafeína/farmacologia , Células Cultivadas , Clonagem Molecular , Citosol/metabolismo , DNA Complementar/metabolismo , Genótipo , Camundongos , Camundongos Knockout , Microscopia Confocal , Técnicas de Patch-Clamp , Isoformas de Proteínas , Coelhos , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transfecção
2.
Biophys J ; 84(2 Pt 1): 942-59, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12547776

RESUMO

The beta-subunit of the dihydropyridine receptor (DHPR) enhances the Ca(2+) channel and voltage-sensing functions of the DHPR. In skeletal myotubes, there is additional modulation of DHPR functions imposed by the presence of ryanodine receptor type-1 (RyR1). Here, we examined the participation of the beta-subunit in the expression of L-type Ca(2+) current and charge movements in RyR1 knock-out (KO), beta1 KO, and double beta1/RyR1 KO myotubes generated by mating heterozygous beta1 KO and RyR1 KO mice. Primary myotube cultures of each genotype were transfected with various beta-isoforms and then whole-cell voltage-clamped for measurements of Ca(2+) and gating currents. Overexpression of the endogenous skeletal beta1a isoform resulted in a low-density Ca(2+) current either in RyR1 KO (36 +/- 9 pS/pF) or in beta1/RyR1 KO (34 +/- 7 pS/pF) myotubes. However, the heterologous beta2a variant with a double cysteine motif in the N-terminus (C3, C4), recovered a Ca(2+) current that was entirely wild-type in density in RyR1 KO (195 +/- 16 pS/pF) and was significantly enhanced in double beta1/RyR1 KO (115 +/- 18 pS/pF) myotubes. Other variants tested from the four beta gene families (beta1a, beta1b, beta1c, beta3, and beta4) were unable to enhance Ca(2+) current expression in RyR1 KO myotubes. In contrast, intramembrane charge movements in beta2a-expressing beta1a/RyR1 KO myotubes were significantly lower than in beta1a-expressing beta1a/RyR1 KO myotubes, and the same tendency was observed in the RyR1 KO myotube. Thus, beta2a had a preferential ability to recover Ca(2+) current, whereas beta1a had a preferential ability to rescue charge movements. Elimination of the double cysteine motif (beta2a C3,4S) eliminated the RyR1-independent Ca(2+) current expression. Furthermore, Ca(2+) current enhancement was observed with a beta2a variant lacking the double cysteine motif and fused to the surface membrane glycoprotein CD8. Thus, tethering the beta2a variant to the myotube surface activated the DHPR Ca(2+) current and bypassed the requirement for RyR1. The data suggest that the Ca(2+) current expressed by the native skeletal DHPR complex has an inherently low density due to inhibitory interactions within the DHPR and that the beta1a-subunit is critically involved in process.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Canais de Cálcio/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Subunidades Proteicas/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/química , Células Cultivadas , Condutividade Elétrica , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/química , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Proteínas Recombinantes , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Sensibilidade e Especificidade , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...